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A theory of the machining of fiber-reinforced materials is pre-
sented. The analysis is restricted to plane deformations of incom-
pressible composites reinforced by strong parallel fibers. Complete
deformation and stress fields, as well as estimates of the forces re-
quired to maintain continuous machining, are derived. The results
apply to both elastic and plastic stress responses.

INTRODUCTION

RESEARCH INTO THE THEORY of the mechanics of machining has been

mainly devoted to the mechanical cutting of isotropic metals [1].* In this
paper we present an analysis of the machining problem as related to fiber-
reinforced materials.

During the machining process a surface layer of material is removed by
a wedge-shaped tool which is constrained to travel parallel to the surface of
the workpiece. We are interested in analyzing the macroscopic behavior of
the composite material and its reactions on the tool. The interaction between
individual fibcrs and the surrounding matrix, and the detailed behavior of
both constituents, are outside the scope of this work.

We consider materials composed of parallel strong fibers embedded in a
weaker matrix. The fibers are initially aligned parallel to the direction of
travel of the tool. We consider composites in which the bulk modulus of the
material and its extensional modulus in the fiber direction are large in com-
parison with the shear moduli. Then, following the three-dimensional con-
tinuum model proposed by Mulhern, Rogers and Spencer [2], we idealize

# Numbers in sq brackets indicate references at the end of the paper.
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these conditions by treating the composite as incompressible, and inexten-
sible along the fiber direction, and we treat the fibers as continuously dis-
tributed.

The general theory of large plane deformations of such “ideal” fiber-re-
inforced materials has been formulated in a recent paper by Pipkin and
Rogers [3]. The results are not restricted to any particular form of stress
response of the composite such as elasticity, plasticity or viscoelasticity.

In the present paper we apply this theory [3] to the problem of orthog-
onal cutting, in which the leading edge of the tool is perpendicular to the
direction of relative motion between tool and workpiece. We assume both
to be sufficiently broad, or to be so constrained, that plane strain conditions
may be assumed. A complete statement of the problem and its assumptions
is given in Section 2. In Section 3 we review those aspects of the general
theory [3] that are relevant to this problem.

In the context of unreinforced, isotropic metals, there are two basic ap-
proaches to the analysis of machining. One is the thin-zone model (e.g.
[4]-[7]) based on assuming that the plastic deformation is concentrated in
a very narrow region in the chip, emanating from the tip of the tool. The
other approach treats the plastic region as a thick zone, and includes the
chip geometry suggested by Palmer and Oxley [8] in which the chip and
workpiece are not in contact at the tool tip. In Section 4 we propose for the
chip a deformation field analagous to this thick-zone model with rupture
and separation occurring ahead of the tool. We obtain the complete stress
solution, paying special attention to the thin layers of very high stress next
to the bounding surfaces parallel to the fiber direction. These singular stress
layers are a feature of the general theory, which also allows the presence
both of stress concentration layers normal to the fiber directions and of points
of stress concentration in regions with curved fibers. In Section 5 we consider
the equilibrium of points at which these different effects coincide. The de-
formation and equilibrium of the finished piece—the remainder of the
workpiece—are treated in Section 6.

The results of different material behaviors in shear are discussed in Sec-
tion 7. In Section 8 we propose a tentative criterion for the separation of
the chip from the rest of the slab in order to effect the continuous flow of the
workpiece relative to the tool. An approximate expression is derived for the
force required to maintain this flow. In the last section we present some
conclusions to be drawn from the work, and we discuss possible alternative
modes of deformation in the machining process.

STATEMENT OF THE PROBLEM

We consider a workpiece of thickness h 4 H which is initially bounded
by the planes X; = 0, @ and X, = —H, h (Figure 1), and in which the
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~—workpiece

Figure 1. Initial configuration. Figure 2. Deformation of the chip.

-

fibers are aligned in the X;-direction. A surface layer of thickness h is re-
moved by driving a rigid wedge-shaped tool, with rake angle (#/2)-a, into
the slab with a relative motion in the X;-direction.

The problem is to calculate the distributions of stress and displacement
in the composite when the tool and workpiece are subjected to equal and
opposite forces F per unit of length in the X,-direction, and with the chip
already formed. The actual development of the chip is not studied.

The material is homogeneous, incompressible, and inextensible in the
fiber direction. The fibers, and thus the local inextensibility condition, are
convected with the deformation. Plane strain conditions are assumed, so
that we may neglect dependence on X;. We also assume the body forces and
inertial terms to be negligible.

‘Throughout the deformation, the end X; = U has zero or uniform dis-
placement in the fiber direction. The remaining end X; = a and lateral
surfaces X, = —H, h are traction-free. On the new surfaces created by the
machining, displacement is obviously specified on the parts in contact with
the tool, and zero tractions are assumed for the remainder. For convenience
we assume the tool to be perfectly lubricated, implying zero shear tractions
in the contact regions.

PREVIOUS THEORY

The theory of large, plane deformations of ideal composites has been
formulated by Pipkin and Rogers [3] for arbitrary material behavior.

It was shown that the kinematical constraints in the theory require that
initially parallel fibers remain parallel and that the distance between them
is conserved throughout a deformation. The deformation is then locally a
simple shear, with the amount of shear y given by

dx = (n+ya)dX,. (3.1)
Here dX; is the length of a material line element initially lying parallel to the
X,-axis, and dx represents its deformed configuration; a and n denote unit

vectors that are respectively tangential and normal to the fibers in the de-
formed state (Figure 2) and lie in the X;-X; plane.
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The analysis also showed that, under weak restrictions on the stress re-
sponse of the composite, every kinematically admissible deformation gives
rise to a stress field which automatically satisfies the equilibrium equations.
Thus, in any mixed boundary-value problem, it only remains to verify that
this stress field satisfies the prescribed traction boundary conditions as well.

If we make the weak assumption that the composite has reflectional sym-
metry in the plane of plane strain, then the stress tensor ¢ may be conveni-
ently written in the dyadic form

6 = — p(I — aa) + Taa 4 S(an 4 na) - Sykk. (3.2)

Here I is the unit tensor and k (= a X n) is the unit vector in the X;-direction.
An alternative form of (3.2) is

T S 0
g = S -—p 0 (33)
0 0 Sgs—p

with a, n and k as the base vectors in the 1-, 2- and 3-directions, respectively.
Thus, T is the total tension on elements normal to the fiber-direction and p
is the total pressure on elements normal to the n-direction.

The shearing stress S and the normal stress difference S;; depend only on
the amount of shear y or its history. Thus, for any particular composite, the
dependence of S on y can be determined from a simple shear test. This will
normally be the only data required, since S;; is needed only for finding 3.
In the present paper we need assume nothing about Sy; except that it is in-
dependent of X.

T and p are stress reactions to the constraints of inextensibility and in-
compressihility, and are determined from the equilibrium equations. For
composites with parallel fibers these equations take the form [3]

a " VI=2%8 —n- VS (34)
n:-Vp=xp+T)+a-VS (35)
and 9p/oX; = 0. Here % denotes the fiber curvature.

SOLUTION FOR THE CHIP REGION

The displacement field that we propose for the chip region is analogous
to the thick-zone model for isotropic metals which has rupture and separa-
tion of the material ahead of the tool tip [8]. It is shown in Figure 2 and
consists only of straight segments and sectors of circles (fans). In each fan
the n-lines are all radial lines, and the fibers are all arcs of concentric circles.
The thickness of the chip layer is unchanged, with constant value h. Thus
the fibers all remain parallel and at the same distance apart, satisfying the
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conditions of admissibility. The proposed deformation also satisfies fiber-
inextensibility and the displacement boundary conditions stated in Section
2.

Within the fans we define local polar coordinates (ry, 6;) and (ry, 6,)
where the radii are measured from the fan centers, and the angles are posi-
tive, measured from the vertical (Figure 2). Then, from previous theory
[9] or by applying (3.1) directly, the amount of shear in the chip layer is

y = (6, 0,06, 0) in (ABC, BCDE, DEF, EFGI). (4.1)
In the fan regions the directional derivatives take the forms
(_l___a 2 ) in ABC
Ty 801 31‘1
(a-V,n-V)= (4.2)
- ~ (.}_..._a_.._._a._)mDEF
79 602 67'2
Then from (3.4), (3.5), (4.1) and (4.2) we obtain
6
T =T(r,6,) + j;o (2s+ r%i) e (43)
7
and
Ty 1 (o oS
= — , 0 — T+ — ) dr. 44
p=2pm0+=f" (1+2) (44)

Here (r, 9) represents (74, 6;) in ABC and (ry, 6;) in DEF; T(r, §,) is the ten-
sion, in the fiber direction, acting on the normal line 6 = 6y, and p(r,, 6) is
the pressure acting on the fiber-line r = 1.

In a straight segment, % = 0 and the directional derivatives are

a-V=—23/es, n-V =00t (45)

where s is the arc length measured along a fiber in the —a direction, and £ is
the perpendicular distance from the innermost fiber (X, = 0). Then (3.4) and
(3.5) simply give

T=T(&8) + f—g-g- as (46)
and
¢ 38
p=pl&s) — J;O rm dé’. (4.7)

In general, the condition of zero traction on a surface with normal v im-
plies that the stress vector av is zero. In the present problem all the free sur-
faces are perpendicular to either a or n. Hence the traction boundary condi-
tions on the chip (Section 2) imply
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T=S8S=0 on AC (v:a) (4.8)
p=S=0 on Al and DF (v=n,—n). (4.9)

The details of the comiplete stress solution can now be presented. From
(4.1) we see that 9S/or and 0S/0¢ vanish everywhere inside the chip region,
for 0 < ¢ < h. Using (4.8), with (4.3) and (4.6) gives

0
T=2£ S(q)d‘q, 0<é<h (4.10)

where 6 is equal to y given in (4.1).

A different situation exists in the bounding fiber layers AI(¢=h) and
CCG(£—0). There T is not given by (4.10). The condition of zero shear trac-
tion on AE and CF implies that S changes discontinuously from a non-zero
value on the interior of the chip to zero on the exterior of the chip. The terms
aS/or and 9S/0¢ in (4.3) and (4.6) then contribute a singular term in T at
& = 0 and £ = h. These two layers of stress singularities each carry a finite
load. Hence

T? 3(é—h) in Al
T — (4.11)
T? 3(¢) in CG

where 8(¢) is the Dirac delta or unit impulse function. T; and T,} are the
finite loads given by (4.3) and (4.6) as

—n S S(n)dy+58(a) in CD

P @ 412

Ty =\LS(a) —hJ, S(n)dy in DF (4.12)
\LS(a) in FG

and

( 6
—h . S(n)dn in AB

Ty =1_nf" S(s)dy—sS(a) in BE (4.13)
\-—Fl—-—LS((x) in EI

where F is the portion of F applied to the chip layer, L is the length of chip
in contact with the tool, and s is the distance from BC. The value of T} in EI
is given by equilibrium of EFGI treated as a free body; we see from (4.13)
that T} is discontinuous at E. Similarly we note from (4.12a) that T* is non-
zero at C; thus, in order to satisfy the boundary condition (4.8), T} is dis-
continuous at C. E and C are singular points, which are considered in detail
in the next section.

99



G. C. Everstine and T. G. Rogers

The singular behavior of T in the surface layers, as exhibited in (4.11),
is a feature of the general theory [3] and has been discussed elsewhere [3,
9]. In a real composite, the extensional modulus in the fiber direction is finite,
but large compared with the shear moduli. We then interpret the layers of
stress concentration to be thin boundary layers of high stress. These thin
lavers have been found in simpler problems [10] involving infinitesimal
deformations of transversely isotropic materials.

Apart from og;, the stress solution is completed by determining p. Using
(4.10) to (4.13) for T in (4.4) and (4.7), and integrating, gives

% [ (h—¢)8(6;) + {2(h — &) —hU(h — g)}f:1 S(,,)d,,] in ABC

p=10in BCDE and EFGI (4.14)

[ (0 + L5 0(e) + ¢ —n0(e) [ S(r)dy | i DEF

where §'(8) = dS/d6 and U(¢) is the Heaviside, or Unit, step function de-
fined as

0, £=0

U(e) = (4.15)
1, £>0.

We note that p is discontinuous across the two boundary fiber layers at AB
and DF, becoming zero on the outer surface thus satisfying the boundary
conditions (4.9).

EQUILIBRIUM OF SINGULAR POINTS

The a-lines and n-lines are two orthogonal families of characteristics for
the hyperbolic differential equations (34) and (3.5). If two characteristics
of the same family meet, we term the point of intersection “singular”. C and
E are thus singular points. At such a point the differential equations must
be replaced by integrated forms. In our case, (3.4) and (3.5) are equilibrium
equations, and the integrated forms reduce to elementary statics.

For equilibrium of the point C it is convenient instead to consider ABC
as a free body (Figure 3a). Equilibrium in the direction normal to BC re-
quires

T#(0) = — T#(0) — hT(a) (5.1)

where T7(0) is given by (4.13b) with s = 0, and T(a) by (4.10) with
9 = o. As noted previously (Section 4) this means that T must suffer a
discontinuous change at C from zero on the outer surface (s =07) to T (0)
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Figure 3. Equilibrium ot singular points C and E.

on the interivr (s = 0%).
Equilibrium in the direction of BC demands that the tool provide a singu-
lar normal pressure at C with resultant R¢ given by

R¢ = hS(a). (52)

The point E is conveniently treated by considering DEF as a free body
(Figure 3b). The resultant of the normal forces on DE is zero, as seen from
(4.10)-(4.13) or by considering the equilibrium of BCDE. Hence, in order
to maintain vertical equilibrium (i.e. in the direction of EF) a resultant
pressure must be applied at E, or a resultant tension must be applied on DF.
The pressure applied at E must be zero if the surface is assumed free of
traction during the machining process. The tool cannot provide a negative
pressure. Thus the equilibrating tensile force can act on DF only through a
singular tensile force —p} acting at F, the point of separation.

At the same time there is no reason, a priori, why the normal line DE
should not carry a singular stress supplied by a finite compressive load Rp
exerted by the tool at D. Equilibrium of DEF then requires

Rp =F, cosec a — hS(a) (5.3)
and

pp = —Fy cot a. (54)

At this stage we note that it is known [3, 9] that normal lines can and
somctimes must carry finito loads. However, all the previous examples show
the singular pressures as arising from the tetm 95/06 in (4.4) when the shear
stress is discontinuous across some normal line. The present case is an exam-
ple of singular normal lines occurring even when the shear stress is continuous
across all normal lines.

The complete set of forces acting on the chip layer is now known and
shown in Figure 4. Here the reactions R}, and R, are simply — T and — T
as given in (4.12c) and (4.13c). The superscript on R is used to denote that
portion of the total reaction Rg which is due to the shearing of the chip. In
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- finished piece

Figure 4. External loading of the chip. Figure 5. Deformation of the finished
piece,

the next section we obtain an additional contribution R; due to the shearing
of the finished piece.

Finally we note that the condition R, = 0, when inserted in (5.3), shows
that the range of validity of our entire solution is restricted. The end loading
F; must satisfy

F;=hS(a) sin a. (5.5)

EQUILIBRIUM OF THE FINISHED PIECE

In Figure 2 we depict the finished picce as having suffered no deforma-
tion. However, (5.4) shows that the chip exerts a tensile load on it at F. Ac-
cording to our idealized theory, this stress singularity would be transmitted
without attenuation along the normal FM. If the lower surface of the work-
piece were rigidly held, this tensile load would be automatically equilibrated.
Then the solution for the entire problem would be complete.

If, however, this lower surface were free, or subjected only to pressure,
then the tension — p2 can be equilibrated only by an equal pressure exerted
by the tool. This would shear the finished piece in the vicinity of FM and
the tool tip P, suggesting that the deformation will be as shown in Figure 5,
particularly if the underside of the tool is horizontal. PMF and PML are both
fans of angle 8, which is determined in terms of a and h/H through

cos (a -+ B) = cos a———%(lwcos a). (6.1)

The deformation is evidently kinematically admissible. The amount of shear
is

4= (—8, —6,) in (PMF, PML) (6.2)

and zero elsewhere.
Although deformation of the finished piece might normally be considered
unusual, its importance has been exaggerated in Figure 5. In practice, the
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ratio h/H << 1, so that (6.1) gives

_ p-)e 8
R
h 1—cosa G F / i
~— 6.3 - P :
B H sina (63) Re P ’
[ {
o
and the downward deflection d of the ’,54‘5:
finished piece as it passes beneath the :/ :
i 1 P — ——————-————-u___
tool is given by R N ars K
4 1 cosp=0 ( L ) (6.4) Figure 6. Equilibrium of the
H H2/ ' ) finished piece.

Thus the “wrinkle” ML would not usually be observable.

The stress analysis is entirely similar to that described in Sections 4 and 5
for the chip, and details will be omitted. Again the stresses in the bounding
fiber layers are singular, and singular pressures are required to equilibrate the
singular points P and M. In the straight segments, p = T = 0. The point
forces acting on the finished piece are shown in Figure 6. We neglect any
pressure distribution which might be exerted on KL, since it would be equili-
brated by an equal and opposite pressure distribution exerted by the tool.

Since the leading edge of the tool is at P, where no unique normal exists,
the reaction R, there can have both vertical aud horizontal components non-
zero, as shown. However, if the tool tip is perfectly lubricated, R, must lie
between the two limiting normals PM and PL. Thus,

0=3%=8. (6.5)
Equilibrium of the finished piece (Figure 6) requires
R =— py sec d (6.6)
R; =p} (sin g —tan & cos B) (6.7)
R, = — p} {sin B + (1 — cos B) tan 3} (6.8)

where p® is given by (5.4) in terms of F,, the portion of F acting on the chip
layer. Note that, in practice, with h < << H, the loads R and R applied to
the driven end are negligible compared with F.

PLASTIC BEHAVIOR

The general theory of large plane deformations of composites [3], on
which the preceding analysis is based, is valid for elastic and plastic material
behaviors. For an elastic material, the shearing stress S depends only on y;
hence the results obtained in the previous sections are valid without change
for elastic stress response, since S(y) has been treated as a function of v.
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For plastic behavior the solution presented is valid only if the state of
stress in the workpiece is monotone non-decreasing in time. Otherwise the
shear stress S is not a single-valued function of y, having a different value
during unloading of an element; in this case the solution must be modified
slightly. For the chip region unloading is possible only in the fan ABC. The
state of stress there depends on the manner in which the fan was formed
during the early stages of separation of the workpiece. If we assume that no
unloading occurred during the incipient flow, then the chip solution we have
obtained is valid without change for plastic as well as elastic behavior.

For the finished piece, the effect of plasticity on the solution is to cause
S to vary rapidly (discontinuously for rigid/plastic behavior) from S(8) to
zera across PM, since unloading has acenrred in the fan PMT., however the
chip was formed. In this case T = p = 0 in PML, so that this fan is now
a “dead” region of zero stress. The remaining part of the solution would pro-
ceed as before but with the new condition that T = 0 on PM.

A CRITERION FOR CONTINUOUS MACHINING

The total force F applied to the left end of the slab can be expressed
directly in terms of p} . From (5.4), (6.7) and (6.8) we have

F = —p} (tan a 4 tan 3). (8.1)

The configuration we have proposed is in static equilibrium for all end forces
F; any increase in F can be equilibrated with a corresponding increase in
— Py » so that the workpiece need not move relative to the tool. However,
this result is based on an assumption of infinite ultimate strength for the
composite, enabling the material to withstand any tensile stress without
rupturing. A real material has only limited strength in any direction. In our
case, rupture of the workpiece at the point of separation F would allow rela-
tive motion to occur.

Thus (8.1) furnishes the basis for a possible criterion for determining
the force F, required to maintain continuous machining. Equations (4.14)
and (5.4) show that the maximum tensile load normal to the fibers is — p
concentrated at F. In fact, — p} is the force needed to equilibrate the
resultant of the forces converging on the singular point E; it is transmitted
to F along the normal line EF. In a real material, this singular response
along EF should be interpreted as a thin layer of high stresses. Just as with
the singular boundary layers ¢ — 0 and & = i, a much more sophisticated
theory is required in order to determine the details of such a stress distribu-
tion. We do not attempt such an analysis here.

Instead, we notc that the neighborhood of EF is a region of small de-
formation, so that a linear stress analysis should be relevant. Such an analy-
sis has already been made [10] for the simpler, but similar, problem of a
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line-force loading of a transversely T-a
isotropic elastic half-space. It shows BN tool
that the stress is indeed concentrated |
within a narrow channel below the :
surface. The maximum stress at any e
1
F

A

!

LA

depth occurs directly below the point P/Z_B\d
of application. For a tensile loading Bz/ il

— p% (per unit of length in the X, -
direction) the compressive stress p is

Figure 7. Alternative de-

given by [10] formation of the fin-
p~ p; /€1I'h (8.2) ished piece.
at a depth h. Here ¢ is a small dimensionless parameter given by
E=2(1—v)p/E. (8.3)

Thus, in (8.2), higher order terms have been neglected. In (8.3), E is the
extensional modulus in the transverse direction, x is the modulus of shear
along the fibers, and v(==1) is the Poisson’s ratio of contraction to extension
in the plane of transverse isotropy.

Hence, in our case we can interpret equations (8.1) and (8.2) to show
that a reasonable, but tentative, estimate of F, is provided by

F,=erh Ty (tan a -+ tan d), (84)

where Ty is the composite’s ultimate tensile strength normal to the fiber
direction.
CONCLUSION

In this study we have presented a theoretical analysis of machining, along
the grain, of materials reinforced with strong fibers. We have shown that
the proposed deformation and the resulting stress field are compatible with
specified boundary conditions of the problem. The results can be interpreted
for both elastic and plastic material responses.

No claim is made that the mode of deformation described is the only
one possible, even within the constraints of the theory. In particular, there
is no reason, a priori, to exclude a displacement field analogous to the thin
zone model for isotropic metals.

The possible deforinations of the finishcd picce appear to depend on the
tool shape. Having assumed the underside of the tool to be horizontal near
the tip P, the deformation of Figure 5 was proposed. If, however, the in-
cluded angle at the tip were less than « — f (while maintaining the same rake
angle (x/2) —a), the finished piece could deform as shown in Figure
7. The stress solution here could be obtained by straightforward analysis
similar to that of Sections 4 and 5.

These uncertainties might be resolved by analyzing the more complex
problem of the incipient development of the chip. In the context of isotropic
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metal cutting, for example, Hill [11] suggests that the ultimate steady-state
flow may be determined by the set of initial conditions. On the other hand,
experimental observations would also help, if only to determine if and when
separation occurs ahead of the tool tip.
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