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A COMPARISON OF THREE RESEQUENCING
ALGORITHMS FOR THE REDUCTION
OF MATRIX PROFILE AND WAVEFRONT

GORDON C. EVERSTINE
Numerical Mechanics Division, David W. Taylor Naval Ship R&D Center, Bethesda, Maryland, U.S.A.

SUMMARY

Three widely-used nodal resequencing algorithms were tested and compared for their ability to reduce
matrix profile and root-mean-square (rms) wavefront, the latter being the most critical parameter in
determining matrix decomposition time in the NASTRAN finite element computer program. The three
algorithms are Cuthill-McKee (CM), Gibbs—Poole-Stockmeyer (GPS), and Levy. Results are presented
for a diversified collection of 30 test problems ranging in size from 59 to 2680 nodes. It is concluded that
GPS is exceptionally fast, and, for the conditions under which the test was made, the algorithm best able to
reduce profile and rms wavefront consistently well. An extensive bibliography of resequencing algorithms
is included.

BACKGROUND

Many problems of scientific and engineering interest reduce to the numerical problem of solving
a large set of linear algebraic equations such as, in matrix form,

Ax=Db (1)

where the vector b and the square matrix A are known, and the unknown vector x is sought. In
finite element and other applications, A is also sparsely populated (i.e., it contains far more
zeros than non-zeros), since the procedure under which finite clement matrices arc assembled
dictates that the off-diagonal matrix terms coupling any two degrees-of-freedom are zero unless
those degrees-of-freedom are common to the same finite element."” It also follows that the
locations of the non-zero elements of the matrix A depend solely on the ordering of the
unknowns. In finite element applications, for example, the ordering of the unknowns cor-
responds to the selection of grid point (or nodal) numbers for the mesh points. Thus, it is possible
with sparse matrices to choose an ordering which results in the non-zeros being located in a way
convenient for subsequent matrix operations such as equation solving or eigenvalue extraction.
A good ordering is essential to the finite element user since virtually all finite element computer
programs contain equation solution and eigenvalue routines which have been expressly written
to operate efficiently on matrices possessing small bandwidth, profile, or wavefront. Efficiency is
obtained by avoiding arithmetic operations on matrix elements known to be zero. The execution
time for a ‘band solver,’ for example, is O(NB 2) for large N and B, where N is the matrix order
and B the bandwidth. For a given finitc clement model, N is fixed, but B depends on the
ordering of the unknowns (grid points). Clearly, in this case, it is desirable to reduce B as much as
possible.
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Unfortunately, it is often difficult to know how to sequence the nodes to effect a good
numbering, particularly for large complicated meshes or those generated automatically on a
computer. Even if known, a good sequence may be tedious to implement. A large number of
algorithms have therefore been developed®! to automate the assignment of grid point labels,
given the connectivity of the mesh. Since it is clearly impractical to check each of the N'! possible
sequences associated with a given matrix A of order N, each algorithm attempts some
presumably rational strategy for arriving quickly at a good, but not necessarily optimal, grid
puint sequence.

The large number of available algorithms presents the potential user with a difficult choice.
Ideally, each developer of a new resequencing scheme would test his method against the
competition, and many developers claim to have done so. (Some additional comparisons appear
in References 52-61.) However, most comparisons are inadequate because the test problems
selected are either too small or too few. Moreover, there is no general agreement among
developers on which of their predecessors’ algorithms are the most effective and hence the most
logical to use for comparison.

Since there is no known way of evaluating resequencing strategies on strictly theoretical
grounds, the comparison must be done empirically on a computer. Thus, there appears to be a
need for a set of test problems which would be available to any interested researcher. To be most
useful, the set should consist of a large number of diversified problems and should include a
selection of large problems. A large number is needed to determine which strategy performs
well consistently, not on just a few fortuitously chosen problems. (A review of the relevant
literature indicates that no one strategy is best for all problems.) On the other hand, large
problems are essential since proper grid point sequencing is more important with large problems
than with small ones. Of course. the criteria for what is ‘large’ will vary with the user and will
depend on the computer and financial resources available. The author, for example, classifies
problems with over 1000 nodes as ‘large’, but even this rough guideline changes for field
problems having only one degree-of-freedom (DOF) per node.

The purposes of this paper are thus two-fold: (i) to present a large set of diversified problems
which can be used to evaluate resequencing strategies, and (ii) to show how three widely-used
algorithms perform on this collection with regard to the reduction of matrix profile and
root-mean-square (rms) wavefront.t

The reasons for selecting rms wavefront for these tests are, first, that it is the parameter of
primary interest to users of the widely-used NASTRAN®? finite element computer program,
and, second, that the author is unaware of any previous rms wavefront comparisons. In
NASTRAN, the computer CP time T required to perform a symmetric matrix decomposition
(triangular factorization) is given approximately by®

T = 3NWZns (To) 2
where

N = matrix order
Wims = rms wavefront of matrix
Ty, = machine time constant

For example, on a CDC 6400 computer, T, is usually taken as 15 % 107° sec. Only the
dominant term in the complete NASTRAN timing equation is given in equation (2).
The primary reason for selecting the three algorithms to compare (Cuthill-McKee (CM),"”

T See the next section for definitions.
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Gibbs-Poole-Stockmeyer (GPS),*° and Levy>?) is that these are the algorithms most often run
by NASTRAN users. Both CM and GPS are included in the BANDIT program,”>**®* a
NASTRAN preprocessor developed to reduce, at the user’s option, matrix bandwidth, profile,
or wavefront. The Levy scheme is in a NASTRAN preprocessor called WAVEFRONT.**

Subsequent sections of this paper present precise definitions of the relevant terms, a
description of the collection of 30 test problems, a brief description of the three algorithms to be
tested and the ground rules of the test, and the test results.

DEFINITIONS

Although the definitions given here are reasonably standard, at least in finite element circles,
uniformity of definitions and notation among the various workers in the field does not yet exist.

Given a symmetric square matrix A of order N, we define a ‘row bandwidth’ b; for row i as the
number of columns from the first non-zero in the row to the diagonal, inclusive. Numerically, b;
exceeds by unity the difference between i and the column index of the first non-zero entry of row
i of A. Then the matrix bandwidth B and profile P are defined as

B =max b; (3)
i=N
N

P= Z b; 4)
i=1

Let ¢; denote the number of active columns in row i. By definition, a column j is active in row i
if /> and there is a non-zcro entry in that column in any row with index k <i. The matrix
wavefront W is then defined as

W =max ¢; (5)

i=N
Sometimes ¢; is referred to as the row wavefront for row i. Since the matrix A is symmetric,
N N
pP= Z b= Z Ci (6)
i=1 i=1

The wavefront W is sometimes called the maximum wavefront W, to distinguish it from the
average wavefront W,,, and root-mean-square wavefront W, defined as

Was=r 3 = ™
1 N
Wan =\ (3 £ 1) ®)
From these definitions, it follows that, for a given matrix,
W< Wine<S Woax<B<N 9

The first two inequalities would be equalities only for uninteresting special cases such as
diagonal matrices.

We define the degree d; of node i as the number of other nodes to which it is connected; i.e.,
more precisely, d; is the number of non-zero off-diagonal terms in row i of the matrix A. (This
implies, for example, that diagonally opposite nodes in a quadrilateral finite element are
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‘connected’ to each other.) Hence, the maximum nodal degree M is

M =max d; (10)

i=N

The number of unique edges E is defined as the number of non-zero off-diagonal terms above
the diagonal. Hence, for a symmetric matrix,

(S

E= izv d; (11)

Thus the total number of non-zeros in A is 2E + N, and the density p of the matrix A is
p=QRE+N)/N*? (12)

Note that, in these definitions, the diagonal entries of the matrix A are included in b; and ¢;
(and hence in B, P, Wiax, Waye, and Woy,s). These definitions make it easy to convert the various
parameters from one convention (including the diagonal) to the other (not including the
diagonal).

Also note that, in this context, the order N of the matrix A 1s sometimes taken to be the same
as the number of nodes. In general finite element usage, however, each node (grid point) has
several degrees-of-freedom (DOF), not just one. For structures having, say, six DOF per node,
the actual DOF values of B, Wax, Wavg, or Wi, would be, in the absence of constraints, six
times their corresponding grid point values.

Example

Definitions (3)-(12) can be illustrated by the following simple example. Figure 1 shows a
matrix of order six. In each row and column a line is drawn from the first non-zero to the

b; ¢ c? d;
1 X 3 9 2
1 X—X—_I X 5 25 2
3 )e__*.__)xf 4 16 3
3 3 9 1
4 2 4 2
6 X X X 1 1 2
y=18 T=18 Y=64 Y=12

Figure 1. Example illustrating definitions of matrix bandwidth, profile, and wavefront

diagonal. Thus b, is the number of columns traversed by the solid line in row i. Similarly, the
number of active columns ¢; in row / is the number of vertical lines in row i to the right of and
including the diagonal. Thus, from the definitions, B=6, Wyax=5, P=18, Wyo,,=3-0,
Wims=33, M =3, E=6, and p = 50-0 per cent.

THE TEST PROBLEMS

During the development of the grid point resequencing preprocessor to NASTRAN known as
BANDIT,>>*** 3 collection of test problems was assembled from NASTRAN users represent-



REDUCTION OF MATRIX PROFILE AND WAVEFRONT 841

ing various U.S. Navy, Army, Air Force, and NASA laboratories. An early version of this
collection was given to Gibbs ef al. at the College of William and Mary for testing their
algorithm.%’5 ® However, plots were no longer available for many of those problems. A later
version of the collection was used in the author’s cornparison55 (for matrix bandwidth reduction)
of the Cuthill-McKee (CM) strategy'’ with the Gibbs-Poole-Stockmeyer (GPS)*® approach.
None of the papers cited presented any detailed descriptions or plots of the test problems being
used. The collection, now numbering 30, has been improved by adding more large problems and
by replacing problems without plots by others with plots. Since the 30 problems have been
collected from finite element users in a variety of engineering disciplines and range in size from
59 to 2680 nodes, the collection is probably large enough and diversified enough to provide a
good test of nodal resequencing algorithms. (In fact, since the collection gives connectivity
information for actual problems, it would probably also be of use to developers of equation
solution and eigenvalue extraction routines.)

Complete descriptions of the 30 test problems are given in Table L. All column headings in the
table have already been defined except for column 2, ‘File no.,” which is the file number on the

Table I. Test problem statistics

No. of Max. No. of
grid nodal unique Matrix Max. Avg. rms
points File degree edges density band- wave- wave- wave-

(N) no. (M) (E) (%) width  profile front front front

59 [ 5 104 767 26 464 11 8- 8- 2-D frame
66 15 5 127 7-35 45 640 21 10 11. Truss
72 12 4 75 4-28 13 244 4 3 3. Grillage
87 7 12 227 7-15 64 2336 43 27- 29 Tower
162 16 8 510 4-50 157 2806 33 17- 19 Plate w/hole
193 17 29 1650 9-38 63 7953 62 41- 44 Knee prosthesis
198 28 11 597 3-55 37 5817 36 29- 31 Reinforced mast
209 10 16 767 3-99 185 9712 71 46- 50 Console
221 30 11 704 3-34 188 10131 77 46. 50- Hull-tank region
234 25 9 300 1-52 49 1999 18 9 9. Tower w/platform
245 29 12 608 2-43 116 4179 30 17- 18- Carriage
307 20 8 1108 2-68 64 8132 35 26- 27 Power supply housing
310 11 10 1069 2-55 29 3006 16 10- 10-  Hull w/refinement
346 5 18 1440 2-69 319 9054 44 26- 27  Deckhouse
361 13 8 1296 2-27 51 5445 25 15- 15-  Cylinder w/cap
419 24 12 1572 2-03 357 40145 172 96- 107 Barge
492 26 10 1332 1-30 436 34282 149 70 80- Piston shaft
503 2 24 2762 2-38 453 36417 126 72- 79- Baseplate
512 8 14 1495 1-34 74 6530 28 13- 15-  Submarine
592 19 14 2256 1-46 260 29397 88 50- 55 CVA bent
607 23 13 2262 1-39 148 30615 86 50- 55. ‘Wankel rotor
758 21 10 2618 1-04 201 23871 61 31+ 38
869 14 13 3208 0-96 587 20397 41 23 25
878 27 9 3285 0-97 520 26933 40 31- 32 Plate w/insert
918 4 12 3233 0-88 340 109273 194 119 131- ~ Beam w/cutouts
992 18 17 7876 170 514 263298 514 265- 302 Mirror
1005 3 26 3808 0-85 852 122075 228 121- 138 Baseplate
1007 22 9 3784 0-85 987 26793 32 27- 27
1242 9 11 4592 0-68 937 111430 193 90- 105 Sea chest

2680 1 18 11173 0-35 2500 590543 362 220- 234-  Destroyer
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computer tape on which the connectivity information for each network is stored. (A copy of this
tape is available to interested researchers.) All matrix statistics (bandwidth, profile, etc.) given in
Table I refer to the network before resequencing, reflecting the nodal sequences generated by
the finite element practitioners. In many cases, these practitioners anticipated using an automa-
tic resequencing computer program and thus made no attempt to start with a good sequence.

Figure 2 shows plots of all 30 test problems, arranged in order of ascending N, the number of
grid points (nodes). Ten of the 30 problems are two-dimensional structures; the rest are
three-dimensional.

THE RESEQUENCING ALGORITHMS TESTED

The three algorithms tested are Cuthill-McKee (CM),"” Gibbs-Poole-Stockmeyer (GPS),?° and
Levy.*® In this section each algorithm is described briefly, with details concerning the specific
implementation used. It is recognized that one cannot really evaluate algorithms per se, but only
specific implementations of algorithms. '

Cuthill McKee (CM)Y

The original version of CM operated generally according to the following procedure: Among
the nodes of low degree, select as potential starting nodes those which can root a graph of
minimal width. (The term ‘starting node’ refers to a node which is assigned the label 1 in the new
sequence.) For each potential starting node, assign the labels 2-N by numbering those adjacent
to new label I (and unnumbered) in order of increasing degree, starting with =1 and
continuing with increasing I until all nodes are sequenced. Of the sequences attempted, select
the one having the smallest bandwidth.

The implementation of CM used in these tests is that appearing in the BANDIT computer
program, version 8,”**%* which contains a version of CM differing from the original algorithm
in two ways: First, the new sequence obtained is reversed (by setting I to N +1—1I for each 1),
since it was observed by George'” and proved by Liu and Sherman®” that such a reversal, which
preserves matrix bandwidth, will often reduce the matrix profile and never increase it. Second.
of all sequences attempted, the one with the smallest rms wavefront is the one selected. (The
matrix profile is also computed for these tests using the same sequence.) Except for these two
changes, the CM computer code is that originally written by Cuthill and McKee.

The data structure originally used by CM required about (M +8)N words of core storage for
the problem-dependent arrays, where N is the number of grid points and M is the maximum
nodal degree. In the BANDIT implementation of CM, word packing is used to reduce the
storage requirements to (M/T.+&)N, where L, the packing density, is an integer (between 2 and
6, inclusive) which depends on the problem size and the computer being used. On a CDC 6400,
for example, the CP time penalty for packing is about 80 wusec per pack or unpack.

Gibbs—Poole~Stockmeyer (GPS)*°

The GPS algorithm differs from CM primarily in the selection of starting nodes. In GPS, only
one starting node is selected, and it is an endpoint of a psendo-diameter of the graph associated
with the matrix. Thus, the structure need be numbered only once, using a procedure which is
similar to the CM numbering algorithm.

The storage requirements of GPS are identical to those of CM, including the use of integer
packing in the BANDIT (version 8) implementation, which is the form of GPS used for the
testing. The GPS computer code in BANDIT was written by the developers. '’
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32
Levy

Unlike CM and GPS, which were developed to reduce matrix bandwidth and profile, the Levy
algorithm was designed specifically to reduce the maximum matrix wavefront, Wy.,. The
algorithm operates generally according to the following recursive procedure: Given the first 1
nodes of a new sequence, the node selected as I + 1 is the one for which the increase in the row
wavefront between rows I and I +1 will be minimum. Levy calls this a ‘minimum growth’
method.

This procedure is followed for one or more trial starting nodes, and the sequence yielding the
smallest wavefront W,., is selected. The first sequence attempted uses as the starting node
either a user-selected node or a node of minimum degree. The latter option was chosen for
these tests since it was felt that, for a production mode program, the user ought to be relieved of
the burden of specifying a starting node. The second and succeeding sequences attempted by the
Levy algorithm select starting nodes randomly. The number of new sequences to be attempted
must be spccificd by the uscr. Aftcr some preliminary experimentation to estimate the speed of
the algorithm, it was decided to request ten sequencing attempts for each test problem. Clearly a
different number would yield different results.

The implementation used for the tests was that obtained by the author from T .evy in 1973 the
only change being that the sequence selected as best is the one yielding the smallest rms
wavefront W, or profile P. Since the Levy algorithm aborts any resequencing attempt in
progress once it determines that it cannot reduce the previous best Wi, the sequence finally
selected will be the one among those carried to completion yielding the smallest W, or P.

The Levy data structure requires 6N + 10E words of core storage for the problem-dependent
arrays, where N is the number of grid points and E is the number of unique edges. The code was
ot rewritten to use word packing for the tests.

TEST RESULTS AND DISCUSSION

The nodes for the 30 test problems were resequenced using the three algorithms described in the
preceding section (CM, GPS, and Levy), the objectives being to reduce rms wavefront and
profile. All computer runs were made on a CDC 6400 computer under the NOS/BE operating
system. The source code was compiled using the FTN compiler, OPT=1. For reference
purposes, a CDC 6400 is about one-third as fast as a CDC 6600. :

The results of the tests appear in Tables II and II1. In addition to the rms wavefront obtained
by each algorithm, Table II also lists, for each algorithm, the CP time expended and the storage
requirements for the problem-dependent arrays. In the case of CM and GPS, which use word
packing, the worst-case of half-word packing is assumed. The CP times listed do not include
basic setup of the arrays.

Table 111 lists, for each algorithm, the profile results, presented in terms of average wavefront
(which equals P/N) rather than profile P to facilitate comparisons with rms wavefront results.
CP umes and storage requirements are unchanged from Table 11.

The first conclusion to be drawn from Tables II and III is that, for most problems, all three
algorithms achieve about the same reduction in rms wavefront and profile. This is, perhaps,
somewhat unexpected since CM and GPS were designed primarily to reduce matrix bandwidth,
whereas the Levy scheme was designed to reduce matrix wavefront. Of the 30 problems, Levy
achieved the best reduction in rms wavefront 13 times, GPS 11 times, and CM 5 times.
However, on four occasions (N =503, N =607, N =878, and N =918) Levy did significantly
worse than the best achieved; on three occasions (N =209, N =245, and N = 1242) GPS did



REDUCTION OF ‘MATRIX PROFILE AND WAVEFRONT 849

Table 1I. Rms wavcfront test results

No. of Rms wavefront CP time (sec.) Storage (words)
grid
points After After After CM & GPS  Levy
(N) Before M GPS Levy CM GPS Levy (M/2+8N 6N +10E
59 8.2 5.5% 6-0 6.1 0-5 0-2 2:7 620 1394
66 11-0 3-2 2-9% 3-0 0-6 0-2 15 693 1666
72 35 NI NI NI 0-3 0-2 12 720 1182
87 29-4 8-3* 89 8-9 1-5 0-4 6-1 1218 2792
162 19-0 10-3 10-6 86* 2-8 0-8 13-4 1944 6072
193 43-8 26-0 27-1 24-7% 119 6:6 36-2 4343 17658
198 30-9 7-3 7-1*% 7-2 27 1-6 231 2673 7158
209 50-3 199 24-5 18-4* 6-0 1-3 37-6 3344 8924
221 50-4 10-2* 10-4 13-3 57 1-5 38-0 2984 8366
234 9-4 73 71 5-1% 1-5 09 14-9 2925 4404
245 185 17-5 18-4 13-5% 4.5 1-4 26-4 3430 7550
307 27-4 NI NI 25-7% 107 1-9 737 3684 12922
310 9-9 NI NI 9-7%  16-2 2:2 32-0 4030 12550
346 271 22-8 24-3 21-8* 18-0 2-7 61-5 5882 16476
361 15-4 14-3 14-2* 14-3 11-3 1-8 387 4332 15126
419 107-1 22-5 222 19-8%  19-5 2-5 1551 5866 18234
492 79-5 14-5 13-0 10-6* 13-3 2-9 1457 6396 16272
503 786 33.1* 34-6 41-9 433 4.2 294:3 10060 30638
512 14-5 127 12-5 12-4*  10-1 4.5 161-0 7680 18022
592 55-2 256 20-5% 21-3 56-3 5-2 1331 8880 26112
607 55-4 29-2 28.9* 38-0 37-6 4-0  362-5 8802 26262
758 37-9 159 12-1% 15-2 Y3-4 62 3067 9854 30728
869 25-0 20-4 20-7 19-8% 132-2 10-4  450-2 12601 37294
878 319 237 22-9* NI 46-0 12-2 3112 10975 38118
918 131-1 257 24.3% 51-1 95-2 9.7 745-7 12852 37838
992 302-0 359 34.7* 388 1412 34-8 801-8 16368 84712
1005 1377 43-5% 49-3 44-5 2526 7-0 1010-0 21105 44110
1007 26-9 24-5 22.9% NI 42-6 14-6  300-3 12588 43882
1242 105-2 429 48-6 38-7% 1242 16-9 1270-9 16767 53372
2680 234-4 40-4 39-9% # 342-3 23-5 # 45560 127810
* = Greatest reduction, NI = No improvement.
# = Not run.

significantly worse; and on two accasions (N =245 and N =592) CM did significantly worse.

The second, and perhaps most striking, conclusion to be drawn from Table I is that GPS is
exceptionally fast. In all cases, CM is second fastest, the Levy algorithm third fastest. The user,
of course, has some control over the running time of the Levy program (but not of CM and GPS)
through his specification of the number of resequencing attempts.

The third conclusion to be drawn from Table II is that the Levy algorithm, as is, requires
considerably more array storage than either CM or GPS, which use the same data structure. In
fact, for the Levy program, one problem (/V = 2680) was tuv big for a CDC 6400 and could not
be run. Clearly, the program could be rewritten to use word packing (as CM and GPS do), but
this may be a non-trivial task, since the programmer has to decide which arrays to pack to yield
the best compromise between storage and CP time. (Word packing, of course, saves core at the
expense of CP time.)
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Table II1. Prafile test results

No. of Average wavefront (P/N)
grid
points After After After
(N) Before CM GPS Levy
59 7-9 5-3* 5-8 59
66 9- 3-2 2-9* 29
72 3.4 NI NI NI
87 26-9 7-9% 8-4 85
162 173 9.9 10-3 8-5%
193 41-2 25-1 26-0 23.8%
198 29-4 6-9 6-7* 6-9
209 46-5 189 227 17-5*
221 45-8 9-8% 99 12-6
234 85 6:6 6-4 4-8%
245 17-1 16-4 NI 12-8%*
307 265 NI NI 24.9%
310 9.7 NI NI 9.5%
346 26-2 217 231 20-7*
361 15-1 141 14-0* 14-2
419 95-8 21-6 21-4 19-0*
492 69-7 13-6 12-2 10-0*
503 72-4 31-7* 32-0 40-0
512 12-8 10-4 10-1* 10-6
592 49-7 24-6 19-1%* 20-4
607 50-4 25-9 25-8* 32-8
758 315 15-0 10-8* 14-1
869 23-5 18-6* 18-8 19-0
878 307 23-4 22:7* NI
918 119-0 24-4 23.2% 47-2
992 265-4 35-3 34.3% 377
1005 121-5 40-9* 42-9 43-1
1007 26-6 24-0 22-6* NI
1242 89-7 41-4 44:9 37-1*
2680 220-4 393 38-9* ¥

*=Greatest reduction.
# = Not run.
NI = No improvement.

Tables II and I1l indicate that Levy’s wavefront reduction performance was generally best for
the smaller problems and GPS’s was generally best for larger problems. This is probably
due to the author’s choice of ten sequencing attempts for the Levy algorithm. As the problems
get larger, the probability of Levy’s selecting a good starting node at random goes down. One
can infer that the algorithm’s performance would improve if the program were allowed to run
longer. However, whether the expenditure of more computer time is justified would be a matter
for each user to decide. One issue that enters into such a decision is the number of times a given
matrix problem is to be solved. If a given problem is to be solved many times (as, for cxample, in
non-linear analysis), or if many right-hand sides are involved (as, for example, in time-
dependent problems), the time spent in sequencing becomes less important.

One might also infer that the performance of the Levy algorithm would improve if trial
starting nodes were selected using a strategy such as that used in CM or GPS, rather than at
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random.} While this may be true sometimes, it was not true for the test problem on which Levy
performed the worst (N = 918), because for this problem the first trial starting node selected by
Levy (which uses a node of minimum degree for the first attempt) was the same starting node
selected by GPS. This same problem (N =918) was also run by Gibbs with his profile
algorithm®” (which is a hybrid of GPS and King,® the latter being similar to Levy®?) with good
results. This would indicate that Gibb’s modification to the King numbering approach (given a
starting node) has a significant cffcct for some problems.

Overall, GPS’s combination of speed and consistency probably rate it the best algorithm of
the three for rms wavefront and profile reduction. Previous testing®”>"*® has already shown it to
be an excellent algorithm for matrix bandwidth reduction, for which it was designed.

Finally, the three algorithms tested were selected because of their heavy use among
NASTRAN users. However, it would be interesting to see how other strategies, including
Gibbs—King®’ and Snay,** would perform on the same data. Both give good results for profile
reduction and hence, Tables II and III indicate, would probably also do well in rms wavefront
reduction.
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