Viscosity Effects on the Propagation of Acoustic Transients

G. C. Gaunaurd*
Fellow ASME
G. C. Everstine
e-mail: EverstineGC@nswcd.navy.mil
Naval Surface Warfare Center
Carderock Division
Bethesda, MD 20817-5700

Introduction

The propagation of a sound pulse through a viscous fluid is an important problem that has been often revisited since the governing equation for the propagation was established by Stokes [1] in 1845. Various, more or less generalized, formulations have appeared in textbooks [2–5] as well as in papers [6–8]. The governing equation is a third-order partial differential equation of parabolic type. In one space dimension, the boundary/initial value problem based on the method of steepest descents. This approximation is ideally suited for this purpose. This basic solution allows for the smoothing-out effect of dispersion within the continuum mechanics. This issue has been covered in detail by Weymann in 1967 [11] and will not be considered here. In the more detailed work by Blackstock [6], a BIVP consisting of Eq. (1) together with a sinusoidal boundary condition, was posed. Blackstock used the “smallness approximation” to reduce the PDE in our Eq. (1) to his Eq. (14), which is the heat equation. The heat equation was then solved for the sinusoidal wave train that was initiated at the origin and later decayed to zero at large distances.

A purely numerical treatment of such transient problems has also been given by Ludwig and Levin [7]. The “smallness approximation” was also used by Szabo [8] in 1968, who stated that the analytic solution of Eq. (1) was “not easy to obtain.” He then proceeded to design an electrical analog system to simulate system responses under such restriction. Finally, Lagerstrom, Cole, and Trilling [9], in a report pointed out to us by a reviewer, obtained an asymptotic expansion for the inversion integral associated with the BIVP, Eq. (1), for the case of large values of time t. We will return to this asymptotic approximation in our final discussion, since we can show that the approximation also emerges from the present complete solution of the BIVP.

In the present problem, there is propagation in only one direction into the infinite viscous medium. The radiation condition, implicit in this work, prevents waves from returning in the “inward direction.” Of particular interest is the solution when the boundary condition is an impulsive excitation at the origin. If such solution were obtained, then it could be used, by means of the convolution theorem, to find solutions for any other excitation. Since the Laplace transform used here is one-sided, the convolution theorem is ideally suited for this purpose. This basic solution will reveal the damping effects of viscosity in a quantititative way. Qualitative analyses in the literature [10], pp. 212–215] have exhibited the anticipated behavior in which the pulse amplitude decreases, and its width broadens, as its propagates.

We note that parabolic PDEs similar to this often have precursor solutions with infinite speed of propagation, so that disturbances are felt immediately at all points in the fluid. This property allows for the smoothing-out effect of dispersion within the context of continuum mechanics. This issue has been covered in detail by Weymann in 1967 [11] and will not be considered here. In

differentiation

Copyright © 2002 by ASME

Journal of Vibration and Acoustics

19

JANUARY 2002, Vol. 124

Revised July 2001. Associate Editor: J. Ginsberg.

JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received July 2000; Revised July 2001. Associate Editor: J. Ginsberg.
the following sections, we derive the analytic solution obtained by operational methods as well as an approximation to the analytical solution based on the method of steepest descents, which will identify the strongest contribution within the complete analytic solution. The power series expansion of \(\mathcal{I}^m \text{erfc}(z) \) is given by \([12], \text{Section 7.2}\)

\[
\mathcal{I}^m \text{erfc}(z) = \sum_{n=0}^{\infty} \mathcal{I}^{n+1} \text{erfc}(t) dt, \quad (n=0,1,2,\ldots). \tag{20}
\]

Hence the inverse of the \(n \)th term in Eq. (15) is, in nondimensional form,

\[
\frac{\tilde{x}^n}{n! \pi^{n/2}} \mathcal{L}^{-1} \left(\frac{-e^{-\tilde{x} \sqrt{\pi}}}{p^{n/2}} \right) = \frac{\tilde{x}^n}{n! \pi^n} (4t)^{n/2-1} \mathcal{I}^{n-2} \text{erfc} \left(\frac{\tilde{x}}{2 \sqrt{t}} \right). \tag{21}
\]

The complete inversion is thus obtained by combining Eqs. (16) and (17) with the sum of all \(n \geq 2 \) terms in Eq. (21):

\[
\tilde{u}(\tilde{x}, \tilde{t}) = \tilde{u}_0 - \mathcal{L}^{-1} \left(\frac{e^{-\tilde{x} \sqrt{\pi}}}{\sqrt{t}} \right) \left[\frac{1}{2\sqrt{t}} + 1 \right] e^{-\tilde{x}^2/(4\tilde{t})} \tag{22}
\]

or, in nondimensional form,

\[
\tilde{u}(\tilde{x}, \tilde{t}) = e^{-\tilde{t}} \left[\frac{1}{\sqrt{\pi}} (1+2\tilde{t}) \frac{\tilde{x}}{2 \sqrt{t}} e^{-\tilde{x}^2/(4\tilde{t})} \right] + \sum_{n=2}^{\infty} \frac{2^n}{n \Gamma(n+1)} \tilde{x}^{n-2} \mathcal{I}^{n-2} \text{erfc} \left(\frac{\tilde{x}}{2 \sqrt{t}} \right). \tag{23}
\]
where
\[\mathcal{I}^m \text{erfc}(z) = \frac{1}{2^m} \sum_{k=0}^{\infty} \frac{(-2z)^k}{\Gamma(k+1) \Gamma\left(1 + \frac{m-k}{2}\right)}. \] (24)

which can be substituted into Eq. (23) to obtain
\[u(\tilde{x}, \tilde{t}) = e^{-\frac{z}{2c}} \sum_{n=2}^{\infty} \frac{\tilde{x}^n}{\Gamma(n+1)} \frac{1}{\Gamma(n+1)} \left(\frac{\tilde{t}}{c \sqrt{\pi}} \right)^n \sum_{k=0}^{\infty} \frac{(-1)^k (\tilde{x}/\sqrt{\tilde{t}})^k}{\Gamma(k+1) \Gamma\left(1 + \frac{n-k}{2}\right)} \] (25)

The triple factorial growth in the denominator of the double sum is an indication of the negligible value of its contribution to the solution. In terms of the original, dimensional variables \(x \) and \(t \), this result is
\[u(x, t) = u_0 e^{-\frac{z}{2c \sqrt{\pi t}}} \frac{x}{2c \sqrt{\pi t}} e^{-\frac{x^2}{4c^2 \pi t}} \]
\[+ u_0 \frac{e^{-\frac{z}{2c \sqrt{\pi t}}}}{t \sqrt{\pi}} \sum_{n=2}^{\infty} \frac{1}{\Gamma(n+1)} \left(\frac{\tilde{t}}{c \sqrt{\pi t}} \right)^n \sum_{k=0}^{\infty} \frac{(-1)^k (\tilde{x}/\sqrt{\tilde{t}})^k}{\Gamma(k+1) \Gamma\left(1 + \frac{n-k}{2}\right)} \] (26)

The factor \(e^{-\frac{z}{2c \sqrt{\pi t}}} \) comes from the shift in Eq. (7) when changing the variable from \(s \) to \(p \). Here it is more convenient to deal with and plot the nondimensional Eq. (25), since a single set of curves will quantitatively describe results for all dimensional values of \(x \) and \(t \).

We note that, for \(n = m + 2 \), the series in Eq. (23) can be expressed as
\[\sum_{n=0}^{m} \frac{(2\sqrt{n})^m}{\Gamma(m+3)} \mathcal{I}^m \text{erfc}(z), \]
where \(z = \sqrt{2}/(1 + \sqrt{1 + \sqrt{1}}) \). A convenient way to evaluate the series is by means of the recursion relation [12,14]
\[\mathcal{I}^m \text{erfc}(z) = \frac{1}{2^m} \mathcal{I}^{m-2} \text{erfc}(z) - \frac{z}{m} \mathcal{I}^{m-1} \text{erfc}(z). \] (27)

All \(m \gg 1 \) terms can be expressed in terms of the first two by the above relation, where the first two are
\[\mathcal{I}^{-1} \text{erfc}(z) = \frac{2}{\sqrt{\pi}} e^{-z^2}, \quad \mathcal{I}^0 \text{erfc}(z) = \text{erfc}(z). \] (28)

An Approximation

Another way to proceed with the inversion of Eq. (6) is to use the change of variable from \(s \) to \(p \) given by
\[1 + \tau s = p^2, \] (29)
which yields
\[u(x, t) = u_0 \frac{1}{\pi^2 t} \int_L \exp \left\{ \frac{1}{2} (p^2 - 1) \left(t - \frac{x}{c p^2} \right) \right\} dp. \] (30)

In this integral, \(L \) is a vertical path to the right of the origin \(O \), and there are an essential singularity at \(p = 0 \) and a branch point at \(s = -1/\tau \).

Let \(f(p) \) denote the function in the exponent of Eq. (30),
\[f(p) = \frac{1}{\tau} \left((p^2 - 1) \left(t - \frac{x}{c p^2} \right) \right). \] (31)

The roots of \(f'(p) \) are the solutions of
\[2p^3 - \alpha p^2 - \alpha = 0, \] (32)
which has no negative real roots. We note that
\[f'(1) = 2 - 2\alpha, \quad f'(-1) = \alpha(\alpha^2 - 1), \quad f'(\infty) = \infty, \] (33)

There are various cases of interest. Assume \(\alpha > 1 \), in which case the waveform that started at \(t = 0 \) has not yet reached the spatial location \(x \), since \(x > c t \). In that case, from Eq. (35),
\[f'(1) < 0, \quad f'(\alpha) > 0, \quad f'(-\infty) > 0, \] (36)
which, because of the sign change, implies a root between \(p = 1 \) and \(p = \alpha \). We denote that root \(p_0 \) (Fig. 1). Similarly, if \(\alpha < 1 \), there is also a root between \(p = 1 \) and \(p = \alpha \), except that, in this case, \(p_0 = \alpha \) and \(p_0 = 1 \) would exchange places in Fig. 1. In both cases, \(f''(p_0) > 0 \). Thus the path \(C \) of steepest descents is parallel to the imaginary axis. This path passes through \(p_0 \) and is asymptotic to the imaginary axis for \(p \to \pm \infty \). The portion of the path that contributes most to the value of the integral is that near the saddle point \(p_0 \). The other roots of \(f'(p) = 0 \) are complex with negative real parts.

We now write the complex number \(p \) in terms of its real and imaginary parts,
\[p = p_0 + i\sigma, \] (37)
so that Eq. (30) can be written
\[u(x, t) = u_0 \frac{1}{\pi^2 t} \int_L \exp \left\{ \frac{t}{\tau} \left((p_0 + i\sigma)^2 - 1 \right) \times \left[1 - \frac{x}{c t (p_0 + i\sigma)} \right] \right\} \times \exp \left((p_0 + i\sigma) \right) dp. \] (38)

We can then expand and approximate the exponential to obtain
\[u(x, t) \approx u_0 \frac{p_0}{\pi^2 t} \int_C \exp \left(f(p_0) - \frac{t}{\sigma^2} \left(1 + \frac{\alpha}{p_0} \right) \right) dp \] (39)
where \(\alpha = x/(ct) \). Thus,
\[
 u(x,t) = u_0 p_0 \frac{p_0 e^{i(p_0)}}{\sqrt{\pi \tau}} \int_{-\infty}^{+\infty} e^{-\omega^2 \tau} d\omega, \tag{40}
\]
where
\[
 f(p_0) = \frac{t}{\tau} (p_0^2 - 1) \left(1 - \frac{\alpha}{p_0} \right) \tag{41}
\]
and \(p_0 \) is the root of \(f'(p) = 0 \) between \(p = 1 \) and \(p = \alpha \). Since the integral in Eq. (40) has the known value \(\sqrt{\pi/\alpha} \), we obtain as the final result
\[
 u(x,t) = u_0 \frac{p_0 e^{i(p_0)}}{\sqrt{\pi \tau}} \sqrt{\frac{p_0}{\alpha + p_0}} (\alpha > 1). \tag{42}
\]
The dependence on \(x \) appears only through \(\alpha \), which is required to find \(p_0 \). This solution is singular at \(t = 0 \), which is the time at which the impulse \(\delta(t) \) acts.

Equation (42) is also valid for \(\alpha < 1 \). In that case, \(C' \) does not cross the essential singularity at \(p = 0 \). However, Eq. (42) is not valid for \(\alpha = 1 \). For this case, Eq. (34) implies
\[
 2p^3 - p^2 - 1 = 0, \tag{43}
\]
which has one real root \(p_0 = 1 \) and two complex roots \((-1 \pm i\sqrt{3})/4 \). It is convenient for this case to use the changes of variable
\[
 p = 1 + v, \tag{44}
\]
which will have the effect of introducing a shift, and
\[
 t = t' + \frac{x}{c}. \tag{45}
\]
With these changes of variables, Eq. (30) becomes
\[
 u(x,t) = u_0 \frac{1}{\sqrt{\pi \tau}} \int_L \exp \left[\frac{1}{\tau} \left(t' + \frac{x}{c} \right) \right] \times (1 + v) \, dv. \tag{46}
\]
For \(v \ll 1 \), this integral simplifies to
\[
 u(x,t) = u_0 \frac{1}{\sqrt{\pi \tau}} \int_{-\infty}^{+\infty} \exp \left[\frac{2v}{\tau} \right] \left(t' + \frac{2vx}{c} \right) \, dv. \tag{47}
\]
With the additional change of variable
\[
 v = \sqrt{c \tau} \frac{p}{2}, \tag{48}
\]
Equation (47) becomes
\[
 u(x,t) = u_0 \frac{1}{\sqrt{\pi \tau}} \int_{-\infty}^{+\infty} \exp \left[\frac{x}{c} \right] \left(x + \frac{1}{\sqrt{p}} e^{-k \sqrt{p}} \right) \, dp, \tag{49}
\]
which is in the form of an inverse Laplace transform in \(x \) \[15,13\]. Thus,
\[
 u(x,t) = u_0 \frac{1}{\sqrt{\pi \tau}} \int_{-\infty}^{+\infty} \exp \left[\frac{x}{c} \right] \left(\frac{1}{\sqrt{p}} e^{-k \sqrt{p}} \right) \, dp, \tag{50}
\]
where
\[
 k = -t' \sqrt{\frac{c}{\tau}} \tag{51}
\]
Since this transform is tabulated \[12\], we obtain
\[
 u(x,t) = u_0 \frac{1}{\sqrt{\pi \tau}} \int_{-\infty}^{+\infty} \exp \left[\frac{x}{4\pi \tau} \right] \left(-c t^2 \right) \, dp. \tag{52}
\]
However, since \(\alpha = 1 \) and \(x = ct \), it therefore follows that
\[
 u(x,t) = u_0 \frac{e^{-x^2/(4\pi \tau)}}{\sqrt{4\pi \tau}} \exp \left(-\frac{x^2}{4\pi \tau} \right), \tag{53}
\]
where we have included the \(e^{-x^2/(4\pi \tau)} \) factoring resulting from the “shift.” This result coincides with the first term of Eq. (26) with \(x = ct \) in the amplitude factor. Thus, the first two terms of the earlier solution are the strongest contributors to the inversion integral \[16\], Chap. 4.

Dispersion Relation

If we seek a solution of Eq. (1a) in the form
\[
 u(x,t) = e^{i(kx - \omega t)}, \tag{54}
\]
where \(k = \omega/c \), we obtain the quadratic
\[
 \omega^2 + (i\nu k^2)\omega - k^2 c^2 = 0, \tag{55}
\]
whose solutions are
\[
 \omega_{1,2} = \pm k \sqrt{c^2 - (\nu k^2)^2} - i\nu k^2/2. \tag{56}
\]
If \(c > \nu k/2 \) (or \(\omega \tau > 2 \)), the solutions are complex with a negative imaginary part, as illustrated in Fig. 2. In this case, there is wave propagation through the medium with an attenuation factor \(e^{-\nu k^2/2} \), which reduces the wave amplitude with time. The second possibility, \(c < \nu k/2 \) (or \(\omega \tau > 2 \)), is of no interest, since the \(\omega \) solutions are purely imaginary, and there is no wave propagation. This situation then resembles ordinary diffusion.

Equation (55) can also be written in terms of \(\tau = \nu/c^2 \), in which case
\[
 \omega^2 = (kc)^2(1 - i\alpha \tau), \tag{57}
\]
which can be solved for \(k \):
\[
 k = \frac{\omega}{c \sqrt{1 + (\omega \tau)^2}} \sqrt{1 + i\alpha \tau} \tag{58}
\]
\[
 = \frac{\omega}{c \sqrt{2 \sqrt{1 + (\omega \tau)^2} + 1}} \sqrt{\sqrt{1 + (\omega \tau)^2} + 1 + i\sqrt{1 + (\omega \tau)^2} - 1}. \tag{59}
\]
If we now express this complex propagation constant in the usual form
\[
 k = \frac{\omega}{c_p} + i\alpha, \tag{60}
\]
where \(c_p \) is the phase velocity, and \(\alpha \) is the attenuation, we obtain
\[
 c_p = \frac{c}{c_p} = \frac{c \sqrt{2 \sqrt{1 + (\omega \tau)^2} + 1}}{\sqrt{1 + (\omega \tau)^2} + 1}, \tag{61}
\]
\[
 \alpha = \frac{\omega}{c \sqrt{2 \sqrt{1 + (\omega \tau)^2} + 1}}. \tag{62}
\]

![Fig. 2 The \(\omega \) solutions of the dispersion relation](image)
We can also write the attenuation factor α in terms of the phase velocity:

$$\alpha = \frac{1 + (\omega \tau)^2}{c_p \tau}.$$ \hspace{1cm} (63)

We state for completeness that, for harmonic processes, the solution of Eq. (1) can be written as

$$u(x,t) = e^{-\alpha x} e^{-i \omega (t-x/c_p)},$$ \hspace{1cm} (64)

where α and c_p are given in Eqs. (63) and (62), respectively. In the common case of weak absorption, the pertinent region of validity reduces from $\omega r < 2$ to $\omega r \ll 1$, and then $k \rightarrow \omega/c$, and $\alpha \rightarrow \omega^2/2$ which are in agreement with Malecki’s results [3] expressed in a different form. One could also see how the solution in Eq. (64) could be used to recover the impulsive excitation at the origin in the transient case discussed initially.

Numerical Results and Discussion

We have obtained both exact and approximate solutions for the propagation behavior of a delta function pulse that travels in a viscous and dispersive medium obeying a general boundary and initial value problem governed by a third-order partial differential equation. The exact solution was obtained by operational methods, where the resulting infinite series was expressed in terms of repeated integrals of the complementary error function. It was also shown how to transform this series into a rapidly convergent power series.

The approximate solution was found independently by the method of stationary phase. It agrees exactly with the first term of the series solution found before.

We return to Eq. (52), which was already seen to agree with the first term of the exact series solution. Using the shift in Eq. (45) and changing our notation for τ to that of Lagerstrom [9] yields

$$u(x,t) \approx \frac{u_0}{\sqrt{2 \pi t (4 \nu^3 c^6)}} \exp \left[-\frac{(x-c t)^2}{8 \nu t^3} \right].$$ \hspace{1cm} (65)

We compare this term to the asymptotic expansion for the inversion integral, Eq. (6), given by Lagerstrom [9] [i.e., Eq. (2.212a), p. 50] for large values of t.

$$u(x,t) \rightarrow u_0 \frac{4 \nu^3 c^6}{2 \pi t} \exp \left[-\frac{(x-c t)^2}{8 \nu t^3} \right] + \ldots.$$ \hspace{1cm} (66)

We note that, in [9], the factor $4 \nu^3 c^6$ has been erroneously placed in the numerator of the radical. It follows that the asymptotic expansion for the inversion integral in [9] can also be obtained from the first term of our complete analytic solution after the correction of the minor algebraic error and deleting the $e^{-2\alpha x}$ factor. It is also well-known that a function of the form

$$u(x,t) = \frac{u_0}{\sqrt{4 \pi t}} e^{-\frac{(x-x')^2}{4 \nu t}}$$

satisfies the heat equation

$$u_t = c^2 u_{xx}$$ \hspace{1cm} (67)

with $x' = c t$. It is then clear why a solution of the heat equation is a good approximation to the solution of Eq. (1) for large t [6].

An asymptotic approximation of the inversion integral for small t can also be extracted from the second term of our series solution. We rewrite it, in the notation of [9], as

$$u(x,t) \rightarrow \frac{u_0}{\sqrt{2 \pi (4 \nu^3 c^6)^{1/2}}} \exp \left[-\frac{x^2}{2 (4 \nu^3 c^6)^{1/2} t^3} \right] + \ldots.$$ \hspace{1cm} (68)

a result which does seem to be available elsewhere. The two asymptotic expansions in Eqs. (65) and (68) have the same structure and have amplitudes proportional to $t^{-3/2}$ and its derivative $t^{-3/2}$ for large and small t, respectively. The double series in the solution, Eq. (26), seems to affect the intermediate region away from $t=0$ or $t=\infty$ only slightly.

We display these results in several plots involving the nondimensional solution presented in Eq. (25). In Fig. 3 is shown a contour plot of the first two terms (omitting the double sum) of the expression for the nondimensional fluid particle velocity \bar{u} (denoted $ubar$ in the figure) vs. nondimensional distance $xbar$ from the origin and nondimensional time $tbar$. In Figs. 4 and 5, we show various cuts taken from Fig. 3. In Fig. 4, nondimensional velocity is plotted vs. nondimensional distance for several values of leading nondimensional distance. In Fig. 5, nondimensional velocity is plotted vs. nondimensional distance for several values of

![Fig. 3 Contour plot of nondimensional velocity vs. nondimensional distance and time. The numbers along the curves are the constant values of “ubar” along each curve.](image-url)
nondimensional time. All three plots show that, as the initial impulse advances either in time or space, its peak amplitude decays, and its width broadens, as would be expected qualitatively. However, the formulas derived (along with their corresponding plots) represent a quantitative evaluation of the anticipated effects of viscosity and dispersion.

Thus, we have analytically and quantitatively described the decay and broadening of impulses propagating in viscous media as modeled by Stokes’ classical boundary-initial value problem. In the process, we have obtained asymptotic expansions of the solution valid for both large and small time.

Acknowledgment

We gratefully acknowledge the partial support of the In-house Laboratory Independent Research (ILIR) program of the Naval Surface Warfare Center, Carderock Division (NSWCCD), and of the Army Research Laboratory, Adelphi, MD.

References

